
1 
 

CMSC 350 Project 4 

The fourth programming project involves writing a program that behaves like the Java command line 

compiler. Whenever we request that the Java compiler recompile a particular class, it not only 

recompiles that class but every other class that depends upon it, directly or indirectly, and in a 

particular order. To make the determination about which classes need recompilation, the Java 

compiler maintains a directed graph of class dependencies. Any relationship in a UML class diagram 

of a Java program such as inheritance relationships, composition relationships and aggregations 

relationships indicate a class dependency. 

The main class for this project should create the GUI shown below:  

 

The GUI must be generated by code that you write. You may not use a drag-and-drop GUI generator. 

Pressing the Build Directed Graph button should cause the specified input file that contains the class 

dependency information to be read in and the directed graph represented by those dependencies to be 

built. The input file associated with the above example is shown below: 

ClassA ClassC ClassE 

ClassB ClassD ClassG 

ClassE ClassB ClassF ClassH 

ClassI ClassC 

Each line of this file specifies classes that have other classes that depend upon them. The first line, 

for example, indicates that ClassA has two classes that depend upon it, ClassC and ClassE. In 

the context of recompilation, it means when ClassA is recompiled, ClassC and ClassE must be 

recompiled as well. Using graph terminology, the first name on each line is the name of a vertex and 

the remaining are its associated adjacency list. Classes that have no dependent classes need not 

appear at the beginning of a separate line. Notice, for example, that ClassC is not the first name on 

any line of the file. 



2 
 

After pressing the Build Directed Graph button, one of following two messages should be generated 

depending upon whether the specified file name could be opened: 

 

Once the graph has been built, the name of a class to be recompiled can be specified and the 

Topological Order button can be pressed. Provided a valid class name has been supplied, the list of 

classes that need to be recompiled should be listed in the order they are to be recompiled in the text 

area at the bottom of the window. An invalid class name should generate an appropriate error 

message. 

The correct recompilation order is any topological order of the subgraph that emanates from the 

specified vertex. Topological orders are not unique, but the one that is to be used for this program is 

the one generated using a depth-first search of the graph. The algorithm for generating this 

topological order is shown below: 

depth_first_search(vertex s) 

  if s is discovered 

    throw cycle detected exception 

  if s is finished 

    return 

  mark s as discovered 

  for all adjacent vertices v 

    depth_first_search(v) 

  mark s as finished 

  push s onto the stack 

This algorithm generates a reverse topological order so after it completes, the forward topological 

order can be ascertained by popping the vertices off the stack. Note that an exception is to be thrown 

if the graph contains a cycle. When circular dependencies exist in Java programs, the compiler must 

make two passes over all the classes in the cycle, first compiling the specifications and subsequently 

the remaining code. For this program, it will be sufficient to display a message indicating that a cycle 

has been detected. 

In addition to the main class that defines the GUI, a second class is needed to define the directed 

graph. It should be a generic class allowing for a generic type for the vertex names. In this 

application those names will be strings. The graph should be represented as an array list of vertices 

that contain a linked list of their associated adjacency lists. The adjacency lists should be lists of 

integers that represent the index rather than vertex name itself. A hash map should be used to 
associate vertex names with their index in the list of vertices: 

For the input file shown above the array list of linked lists of integers would be the following: 



3 
 

0 [[1, 2] 

1 [] 

2 [3, 6, 7] 

3 [4, 5] 

4 [] 

5 [] 

6 [] 

7 [] 

8 [1] 

Storing the vertex indices rather than the names simplifies the depth-first search. The hash map 

would associate index 0 with ClassA, index 1 with ClassC and so on. 

The directed graph class needs three public methods, one to initialize the graph each time a new file 

is read in, one to and an edge to the graph and one to generate a topological order given a starting 
index. 

Finally checked exception classes should be defined for the cases where a cycle occurs and when an 
invalid class name is specified. 

You are to submit two files. 

1. The first is a .zip file that contains all the source code for the project, which includes any 

code that was provided. The .zip file should contain only source code and nothing else, 

which means only the .java files. If you elect to use a package the .java files should be 

in a folder whose name is the package name. 

2. The second is a Word document (PDF or RTF is also acceptable) that contains the 

documentation for the project, which should include the following: 

a. A UML class diagram that includes all classes you wrote. Do not include predefined 

classes. You need only include the class name for each individual class, not the 

variables or methods 

b. A test plan that includes test cases that you have created indicating what aspects of 

the program each one is testing 
c. A short paragraph on lessons learned from the project 

Grading Rubric: 

Criteria Meets Does Not Meet 

Design 

5 points 0 points 

GUI is hand coded and matches required 
design (1) 

GUI is generated by a GUI generator or 
does not match required design (0) 

Includes a generic class for a directed 
graph (2) 

Does not include a generic class for a 
directed graph (0) 



4 
 

Graph is represented as an array list of 
vertices that contain a linked list of their 
associated adjacency lists (1) 

Graph is not represented as an array 
list of vertices that contain a linked list 
of their associated adjacency lists (0) 

Includes checked exception classes for 
cycles and invalid class names (1)  

Does not Include checked exception 
classes for cycles and invalid class 
names (0)  

Functionality 

10 points 0 points 

Produces correct topological order for all 
cases without cycles (3) 

Does not produce correct topological 
order for all cases without cycles (0) 

Produces error message for all cases 
with cycles (3) 

Does not produce error message for all 
cases with cycles (0) 

Reports error message when file does 
not open (2) 

Does not report error message when 
file does not open (0) 

Reports error message when invalid 
class name is entered (1) 

Does not report error message when 
invalid class name is entered (0) 

Generates message confirming graph 
has been built (1) 

Does not generate message confirming 
graph has been built (0) 

Test Cases 

5 points 0 points 

Test cases include a graph without cycles 
(2) 

Test cases do not include a graph 
without cycles (0) 

Test cases include a graph with cycles (1) Test cases does not include a graph 
with cycles (0) 

Test cases include an invalid file name 
(1) 

Test cases do not include an invalid file 
name (0) 

Test cases include an invalid class name 
(1) 

Test cases do not include an invalid 
class name (0) 

Documentation 

5 points 0 points 

Correct UML diagram included (2) Correct UML diagram not included (0) 

Lessons learned included (2) Lessons learned not included (0) 

Comment blocks with class description 
included with each class (1) 

Comment blocks with class description 
not included with each class (0) 

Overall Score 
Meets Does not meet 

16 or more 0-15 

 


