CMSC 350 Project 4

The fourth programming project involves writing a program that behaves like the Java command line
compiler. Whenever we request that the Java compiler recompile a particular class, it not only
recompiles that class but every other class that depends upon it, directly or indirectly, and in a
particular order. To make the determination about which classes need recompilation, the Java
compiler maintains a directed graph of class dependencies. Any relationship in a UML class diagram
of a Java program such as inheritance relationships, composition relationships and aggregations
relationships indicate a class dependency.

The main class for this project should create the GUI shown below:

|| Class Dependency Graph — O X
Input file name: \araph.ixt | | Build Directed Graph |
Class to recompile: [CIassA \ ‘ Topological Order

Recompilation Order
ClassA ClassE ClassH ClassF ClassB ClassG ClassD ClassC

The GUI must be generated by code that you write. You may not use a drag-and-drop GUI generator.

Pressing the Build Directed Graph button should cause the specified input file that contains the class
dependency information to be read in and the directed graph represented by those dependencies to be
built. The input file associated with the above example is shown below:

ClassA ClassC ClassE

ClassB ClassD ClassG

ClassE ClassB ClassF ClassH
ClassI ClassC

Each line of this file specifies classes that have other classes that depend upon them. The first line,
for example, indicates that C1assA has two classes that depend upon it, ClassC and ClassE. In
the context of recompilation, it means when ClassA is recompiled, ClassC and ClassE must be
recompiled as well. Using graph terminology, the first name on each line is the name of a vertex and
the remaining are its associated adjacency list. Classes that have no dependent classes need not
appear at the beginning of a separate line. Notice, for example, that C1asscC is not the first name on
any line of the file.

After pressing the Build Directed Graph button, one of following two messages should be generated
depending upon whether the specified file name could be opened:

| Message X | Message X

'-’:\|d_/" Graph Built Sucessfully '-’:\L," File Did Not Open

OK OK

Once the graph has been built, the name of a class to be recompiled can be specified and the
Topological Order button can be pressed. Provided a valid class name has been supplied, the list of
classes that need to be recompiled should be listed in the order they are to be recompiled in the text
area at the bottom of the window. An invalid class name should generate an appropriate error
message.

The correct recompilation order is any topological order of the subgraph that emanates from the
specified vertex. Topological orders are not unique, but the one that is to be used for this program is
the one generated using a depth-first search of the graph. The algorithm for generating this
topological order is shown below:

depth first search(vertex s)

if s is discovered
throw cycle detected exception

if s is finished
return

mark s as discovered

for all adjacent vertices v
depth first search(v)

mark s as finished

push s onto the stack

This algorithm generates a reverse topological order so after it completes, the forward topological
order can be ascertained by popping the vertices off the stack. Note that an exception is to be thrown
if the graph contains a cycle. When circular dependencies exist in Java programs, the compiler must
make two passes over all the classes in the cycle, first compiling the specifications and subsequently
the remaining code. For this program, it will be sufficient to display a message indicating that a cycle
has been detected.

In addition to the main class that defines the GUI, a second class is needed to define the directed
graph. It should be a generic class allowing for a generic type for the vertex names. In this
application those names will be strings. The graph should be represented as an array list of vertices
that contain a linked list of their associated adjacency lists. The adjacency lists should be lists of
integers that represent the index rather than vertex name itself. A hash map should be used to
associate vertex names with their index in the list of vertices:

For the input file shown above the array list of linked lists of integers would be the following:

~
N

~
~

O J o Ul bW O
— o, —
o e e e N (O —
~
(@]

[a—

Storing the vertex indices rather than the names simplifies the depth-first search. The hash map
would associate index 0 with C1assa, index 1 with ClassC and so on.

The directed graph class needs three public methods, one to initialize the graph each time a new file
is read in, one to and an edge to the graph and one to generate a topological order given a starting
index.

Finally checked exception classes should be defined for the cases where a cycle occurs and when an
invalid class name is specified.

You are to submit two files.

1. Thefirstisa . zip file that contains all the source code for the project, which includes any
code that was provided. The . zip file should contain only source code and nothing else,
which means only the . java files. If you elect to use a package the . java files should be
in a folder whose name is the package name.

2. The second is a Word document (PDF or RTF is also acceptable) that contains the
documentation for the project, which should include the following:

a. A UML class diagram that includes all classes you wrote. Do not include predefined
classes. You need only include the class name for each individual class, not the
variables or methods

b. A test plan that includes test cases that you have created indicating what aspects of
the program each one is testing

c. A short paragraph on lessons learned from the project

Grading Rubric:

Criteria Meets Does Not Meet
5 points 0 points
GUIl is hand coded and matches required | GUl is generated by a GUI generator or
Design design (1) does not match required design (0)
Includes a generic class for a directed Does not include a generic class for a
graph (2) directed graph (0)

Graph is represented as an array list of
vertices that contain a linked list of their
associated adjacency lists (1)

Graph is not represented as an array
list of vertices that contain a linked list
of their associated adjacency lists (0)

Includes checked exception classes for
cycles and invalid class names (1)

Does not Include checked exception
classes for cycles and invalid class
names (0)

Functionality

10 points

0 points

Produces correct topological order for all
cases without cycles (3)

Does not produce correct topological
order for all cases without cycles (0)

Produces error message for all cases
with cycles (3)

Does not produce error message for all
cases with cycles (0)

Reports error message when file does
not open (2)

Does not report error message when
file does not open (0)

Reports error message when invalid
class name is entered (1)

Does not report error message when
invalid class name is entered (0)

Generates message confirming graph
has been built (1)

Does not generate message confirming
graph has been built (0)

Test Cases

5 points

0 points

Test cases include a graph without cycles

(2)

Test cases do not include a graph
without cycles (0)

Test cases include a graph with cycles (1)

Test cases does not include a graph
with cycles (0)

Test cases include an invalid file name

(1)

Test cases do not include an invalid file
name (0)

Test cases include an invalid class name

(1)

Test cases do not include an invalid
class name (0)

Documentation

5 points

0 points

Correct UML diagram included (2)

Correct UML diagram not included (0)

Lessons learned included (2)

Lessons learned not included (0)

Comment blocks with class description
included with each class (1)

Comment blocks with class description
not included with each class (0)

Overall Score

Meets

Does not meet

16 or more

0-15

